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For relativistic field theories, in a sense specified in section 2, the 
invariance under time reversal “of the second kind” (time reversal 
including particle-antiparticle conjugation) is proved mathematically. 
Consequently, the postulate of invariance under time reversal (“of the 
first kind”) is, for field theories of this type, completely equivalent to 
the postulate of invariance under particle-antiparticle conjugation.

Introduction.

It was found by several authors that the postulates of in
variance of the laws of nature under time reversal or under 

particle-antiparticle conjugation1 allow one to rule out some 
kinds of couplings which, nevertheless, are in accordance with 
the postulate of relativistic invariance. Two applications are 
hitherto known, viz.

(1) Coupling between one Bose field (“mesons”) and one 
Dirac field (“nucleons”). Simultaneous coupling with and without 
derivatives is forbidden for scalar and pseudovector fields2’3.

(2) Fermi coupling of four Dirac fields. In a sum of several 
covariant couplings, the phases of the coupling constants must 
be the same4’0.

It is a remarkable fact that both results follow from each 
of the two postulates. Therefore, one might be led to assume 
that, quite generally, a relativistic field theory is invariant either

1 We prefer the term “particle-antiparticle conjugation” (though more 
lengthy) to the more commonly used denotation “charge conjugation”.

2 As a consequence of particle-antiparticle conjugation, cf. Lüders, G., R. 
Oehme, and W. E. Thirring, Z. Naturforschung 7 a, 213 (1952); Pais, A., and 
R. Jost, Phys. Rev. 87, 871 (1952).

3 As a consequence of time reversal, cf. Lüders, G., Z. Physik 133, 325 (1952).
4 As a consequence of time reversal, cf. Biedenharn, L. C., and M. E. Rose, 

Phys. Rev. 83, 459 (1951).
5 As a consequence of both time reversal and particle-antiparticle conjugation, 

cf. Tolhoek, H. A. and S. R. de Groot, Phys. Rev. 84, 151 (1951).
1*
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under both transformations or under neither of them. In the
present note, the proof of this conjecture will be given. For the 
sake of simplicity, the considerations are restricted to local field 
theories constituted by the usual fields of spin 0, 1, and 1/2. 
The coupling Hamiltonians shall contain no derivatives of the 
Dirac fields and no higher derivatives than the first of the Bose 
fields. The theories shall be relativistic in a sense specified in 
section 2 by the postulates I, II, I', II', la, Ila. It seems very 
likely that the result of the considerations, i. e., the equivalence 
of the two kinds of invariance postulates, holds true also under 
more general conditions.

In the following, two types of time reversal will appear: 
the time reversal “of the first kind’’ which, loosely speaking, 
consists in a reversal of the motion1 of all particles, and the 
time reversal “of the second kind”, a simultaneous performance 
of a proper time reversal and a particle-antiparticle conjugation2. 
(The only type of time reversal which is of relevance for the 
principle of detailed balance and, perhaps, for the foundation 
of thermodynamics is that of the first kind3.) In this paper it 
is proved that a relativistic field theory (in the sense specified 
in section 2) is automatically invariant under lime reversal of 
the second kind4. For the validity of the proof, one has explicitly 
to assume that the field theory in question is invariant under 
reflection in space; a formal reflection in time acts as an inter
mediate step in the proof.

As the time reversal of the second kind is identical with a 
simultaneous cation of a time reversal of the first kind
(i. e., time reversal in the proper sense) and a particle-anti- 
particle conjugation, a relativistic theory (in the restricted sense 
of this paper) is either invariant under both operations or under 
neither of them. Therefore, both of these invariance postulates

1 In a previous paper (Z. Physik 133, 325 (1952)), we preferred the term 
“Bewegungsumkehr” (reversal of motion) to “Zeitumkehr” (time reversal) for this 
operation.

2 The different types of time reversal were also considered by J. Tiomno in 
his Princeton thesis. Further, S. Watanabe (Phys. Bev. 84, 1008 (1951)) uses two 
types of time reversal; his “standpoint 1” corresponds to our time reversal of 
the second kind, and vice versa.

3 Coester, F., Phys. Bev. 84, 1259 (1951), Lüders, G., Z. Physik 133, 325 
(1952).

4 This conjecture was suggested to the writer in a correspondence with B. Zu- 
MiNo, New York.
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lead to the same consequences, e. g., the exclusion of some 
couplings. It seems to be a matter of taste which of these two 
postulates is considered the more fundamental one.

We shall be concerned with various types of symmetry ope
rations: viz., two types of time reversal, particle-antiparticle con
jugation, and reflections in space and in time. These operations 
will be uniformly treated as substitutions; the prescriptions for 
these substitutions are summarized in Table 1. In this table, 
<p (r) means the operator of a spin 0 field, <p (r) the operator 
corresponding to its derivative with respect to time; furthermore 
<pk (r) (k = 1, 2, 3) are the space components of a spin 1 field, 
and (p0 (r) is the time component; finally, <pk (r), 9V(r) are the 
derivatives with respect to the time, and ip (r) is the operator of 
a Dirac field. All operators shall be understood in the Schrô
dinger representation, where one, of course, has identities of 
the form

99 (r) = z [H, 99(c)]. (0.1)

Further, one has subsidiary conditions for spin 1 fields with 
non-vanishing rest mass. In the table, the quantities e0, £i/t,

etc., are multiplicative c-numbcrs, whereas the symbols 
U, C, T mean four-rowed matrices acting on the spinor indices.

In section 1, the mathematical definitions of the two kinds 
of time reversal and of particle-antiparticle conjugation are 
summarized. In section 2, the proof is given for the invariance 
of a relativistic field theory under time reversal of the second 
kind. In Appendix 2, a lemma on the covariant quantities which 
can be constructed from Dirac spinors is proved.

1. Time reversal of the first and second kind, 
and particle-antiparticle conjugation.

The lime reversal of the first kind was formulated for the 
first time by Wigner1; the substitutions on the field operators, 
corresponding to this operation, were given in a previous paper2. 
These substitutions are summarized in the second column of 
fable 1. The most essential prescription is that, according to the

1 Wigner, E. P., Göttinger Nachr. math.-phys. KI. 1932, 546.
2 Lüders, G., Z. Physik 133, 325 (1952), in the following quoted as A.
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second line from below, each c-number is to be replaced by its 
complex conjugated value. Because of the appearance of i in the 
Schrôdinger equation, this leads to the time reversal of the desired 
character as pointed out in A. From the table, one reads further 
that, e. g., the operator y (T) of a scalar or pseudoscalar field is 
to be replaced by e0 <p (r) and its time derivative (p (r) by 
— eoç’(T)1, the quantity e0 being a complex number of modulus 
one2. The quantity e0 is restricted to ± 1 for real fields. In the same 
way, Ej and £i/s have modulus one and £x = ± 1 for real fields 
(e. g., Ej = — 1 for the Maxwell field, c. f., A). The restrictive 
conditions for Majorana fields, the spin 1/2 analogue to real 
fields, will be discussed in connection with the particle-anti- 
particle conjugation. For different kinds of fields one may, of 
course, choose different factors e.

1 Because of the identity (0.1) and the prescription that i is to be replaced 
by -i, it is only in this way that one can hope to obtain an invariant Hamiltonian H.

2 This is a consequence of the commutation relations, which shall be preserved.
3 There was a mistake in the corresponding equation (1.9) of A.
4 o’, ß are the usual Hermitian Dirac matrices. It is y* = ißak, yi = ß, 

ys = yiViTaVi = í«i«2«i> V Çr) = y>* Çr) ß> further * = complex conjugated,
7 = transposed, + = Hermitian adjoint of a four-rowed matrix.

6 Some of the properties of the matrices U, C, T are summarized in Appendix 1.
8 Kramers, H. A., Proc. Acad. Sei. Amsterdam 40, 814 (1937); Pauli, W., 

Bev. Mod. Phys. 1.3, 203 (1941); Schwinger, J., Phys. Rev. 74, 1439 (1948). The 
definition of the matrix C in the present paper is identical with that given by 
Pauli.

. The matrix U entering into the substitutions for Dirac fields 
was defined in A by the conditions3’4

U^a*U  = — a, F“1 ß*U  = + ß, (11)

and the postulate of unitarity (in order to preserve the commuta
tion relations)

(1-2)

This definition is unique up to a factor of modulus one5 6.
The particle-antiparticle conjugation*  can be formulated in 

a quite similar way (third column of the table). The essential 
feature, which is characteristic of this operation, is the replace
ment of all field operators by the Hermitian adjoint operators 
or, in the spin 1/2 case, by a linear combination of these adjoint 
operators. The quantities r/0, r/x, are again complex numbers 
of modulus one, and ??0, are restricted to ± 1 for real fields



8 Nr. 5

(e. g., = — 1 for the Maxwell held). For real fields one has,
of course, to identify (T), (r), ç?*  (r) with <p (r), <pk (f), 
<p0 (r) in the prescriptions for the substitutions.

The matrix C is defined by

C_1a*C  = +a, C~1ß*C= —ß (1.3)
and

CCf = 1 (1.4)

uniquely up to a factor of modulus one. From a comparison 
of (1.1) and (1.3), one sees that the matrix

T = C*U  (1.5)

anticommutes with the Dirac matrices a, ß

T~'«T = —a, T~1ßT = —ß. (1.6)

As T is furthermore a unitary matrix, one may put

T = axauazß = i y4ys, (I-7)

which gives a relation between the phase factors of U and C.
For a Majorana field1 the anticommutator between ip*  (r) 

and ip (/') holds unchanged, but one has the subsidiary con
dition2

ip*  (r) = C ip (?), ip (r) = C*  ip*  (r). (1.8)

The operators ip ( T) and ip (r') do not anticommute any longer 
but, as a consequence of the foregoing equation, one finds

{Vafö’ Vß (?')} = (L9)

From a special row of the table one sees that, for Majorana 
fields, £i/, is restricted to ± 1 and to ± 1.

The time reversal of the second kind is obtained if one, first3, 
performs a particle-antiparticle conjugation and, subsequently, 
a time reversal of the first kind. The result of this sequence of

1 Majorana, E., Nuovo Cimento 14, 171 (1937).
2 These two equations are compatible because of eq. (A 1.2) in Appendix 1.
3 This special order of the operations was chosen only to make the prescrip

tion unique.
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operations is summarized in the fourth column of the table. In 
all cases, one has

£ Yj Ó = 1 (1.10)

(Note that ôô*  = 1 !). The matrix T has been defined by eq. 
(1.7).

AH these symmetry operations can be applied to state vectors 
by the prescription given in A: Write any state vector ’/z in the 
form

T = (1.11)

where Vz0 is the vacuum of the free fields, and perform the sub
stitutions on the creation operator Q. This prescription is unique 
in spite of the various possibilities of writing down Q as pointed 
out in A. The prescription just formulated does not lead to con
tradictions, as all three operations transform creation operators 
into creation operators and annihilation operators into anni
hilation operators.

A given field theory is invariant under a symmetry operation 
if, in the Schrôdinger representation, the commutation relations 
between the field operators, the Hamiltonian H, and possible 
subsidiary conditions are preserved. One easily checks that this 
is true for all symmetry operations considered so far if one has 
non-interacting fields. If we restrict ourselves to interaction 
Hamiltonians without derivatives, the commutation relations hold 
unchanged and one has only to examine the interaction part, 
Hj, of the Hamiltonian. That means that we have to investigate 
whether such a choice of the c-number factors in the substitutions 
can be made so that Hj is simply multiplied by + 1. Therefore, 
it is quite clear that a non-trivial problem occurs only if the 
interaction Hamiltonian is a sum of elementary interactions, 
where the interaction density, 5ï7(r), is given by a simple product 
of field operators, supplemented, if necessary, by the Hermitian 
adjoint expression. If one allows for first derivatives of the Bose 
fields in the interaction, one has to examine both commutation 
relations and Hamiltonian; we shall, however, avoid this dif
ficulty by constructing a “nucleus of the interaction representa
tion’’ which gives commutation relations as in the case without 
interaction.
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A substitution which does not affect c-numbers and the order 
of factors in products can be generated by a canonical trans
formation. Consequently, the particle-antiparticle transformation 
is the only transformation considered in this section, which is 
equivalent to a canonical transformation.

2. Invariance of relativistic field theories under time 
reversal of the second kind.

In order to prove, for relativistic field theories, the invariance 
under time reversal of the second kind it is, primarily, necessary 
to give a specified definition of these field theories. Only the case 
of non-derivatiue couplings will be treated in some detail. The 
modifications of the considerations for derivative couplings (first 
order derivatives of Bose fields) are discussed at the end of the 
section.

A relativistic field theory with non-derivative coupling, con
stituted by fields of spin 0, 1, 1/2, will be defined by the fol
lowing two postidates.

I. The commutation relations arc identical with those for the 
free fields.

II. The interaction part, Hj, of the Hamiltonian is a Hermitian 
operator containing no derivatives of the field operators, and 
the corresponding localized density transforms like a scalar 
under the orthochronous Lorentz group (including reflections 
in space, but not in time).

It would certainly be more satisfactory to give a more funda
mental definition of relativistic field theories, using the Lagrangian 
formulation, etc. But, for the present purpose, this would involve 
the introduction of comparatively complicated general considera
tions. We are convinced that our results hold also for wider 
classes of relativistic field theories which are not covered by the 
postulates I, Il and I', II', respectively.

In addition to postulate I, we impose a restriction on the 
relation between different Dirac fields which, in principle, might 
either commute or anticommute1. We explicitly assume

1 In contrast to opinions occasionally expressed in the literature, there seems 
not to exist a simple correspondence between theories with anticommuting Dirac 
fields and those with commuting Dirac fields if one has more than two such fields. 
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la. Kinematically independent Dirac fields anticommute.

This is a necessary condition for the general validity of the proof 
to be given below.

As one of the steps in our proof, viz. the formal reflection 
in time, leads to a reversal of the order of factors in products, 
we assume that all products in SHj (r) are symmetrized in the 
same way as they are in the so-called “charge symmetrical” 
formulation1.

Ila. Each product of m Bose fields and 2 n Dirac fields is to 
be replaced by the sum, divided by (zn + 2 n) !, of all 
permutations of the factors, each of the terms being multi
plied by + 1 or — 1 for an even or odd permutation of the 
Dirac fields, respectively.

Making use of postulate la, it is seen that this symmetrized pro
duct has the simple property that it is multiplied by (—)n if 
the order of all factors is reversed.

Before entering into the proof that the invariance under time 
reversal is a mathematical consequence of the postulates I, la, 
II, Ila, we have first to make clear the way in which Dirac 
fields can appear in SHj and then to formulate in more detail 
the reflection in space. The form in which Dirac fields enter 
could be restricted by a further postulate, but this is not necessary 
if we make use of a lemma proved in Appendix 2. According 
to this lemma, every covariant quantity consisting of products 
of 2n spinors can be represented as a linear combination of 
products of the well known bilinear covariant quantities

iïpYpV, iÿy^yvy, ¡ÿy^yW (2.1)

Consequently, the spin 0 and spin 1 fields are to be combined 
with these covariant quantities in such a way that one formally 
obtains a scalar (under the proper Lorentz group) for the inter
action density Dij (r).

In postulate II, the invariance of Hj under reflections in space 
was stated. The substitutions corresponding to a reflection at 
the origin of the coordinate system are summarized in column 5

1 Heisenberg, W., Z. Physik 90, 209, 92, 692 (1934); Schwinger, .1., Phys. 
Bev. 74, 1439 (1948). 
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of Table 1. The expressions given there are more general than 
necessary, as one usually restricts £0, êi to the values ± 1- Fields 
with £0>1 = + 1 are denoted as proper fields and those with 
£01 = — 1 as pseudofields. We shall, however, not restrict £1/. 
apart from having modulus one. One easily checks that the 
quantities (2.1), constructed from Dirac fields, transform just like 
ordinary scalars, vectors, tensors of rank two, pseudovectors, 
and pseudoscalars, if one disregards for the moment the factors 

. Invariance under reflection in space means that the factors 
£ can be chosen in such a way that the interaction density, apart 
from the substitution of r by — r, is simply multiplied by + 1. 
Then the integrated interaction Hamiltonian Hj is evidently in
variant.

After these preliminaries we are able to give the proof of 
the invariance under time reversal of the second kind. This 
proof proceeds in two steps. First, we shall show that a field 
theory covered by the postulates given above is invariant under 
a “formal reflection in time’’, which essentially is the Lorentz 
transformation of the operators corresponding to a reversal of 
the direction of the time axis. Subsequently, we shall demon
strate that this reflection in time is equivalent to just the time 
reversal of the second kind, to which one can go over by the 
process of Hermitian conjugation.

The substitutions corresponding to the formal reflection in 
time are summarized in column 6 of the table. It is an essential 
feature of this reflection that the matrix T (eq. (1.7)) plays the 
role of the corresponding spinor transformation. It should, per
haps, be mentioned that this operation is the only one of all 
substitutions considered in this paper which cannot be applied 
to state vectors in a simple manner, as it transforms creation 
operators into annihilation operators, and vice versa. But this 
does not matter in our connection, as this reflection enters only 
as an intermediate step in our proof.

This formal reflection in time is to be accompanied by a 
reversal of the order of factors in products in order to preserve 
the commutation relations of the Bose fields. The symmetrization 
postulate Ha was made in order to have simple behaviour under 
this reversal of the order of factors. Under this reversal, sym
metrized products of operators, among them 2n Dirac fields, are 
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multiplied by (—)" as already pointed out. This result may be 
expressed by saying that each covariant quantity (2.1) takes up 
an additional factor —1. Consequently, one can easily check 
that the bilinear covariants transform under formal reflection 
in time, just as ordinary scalars, vectors, etc., and as it was 
postulated in the table for Bose fields. Thus, as the interaction 
density (r) is formally a scalar under the proper Lorentz 
group, and as we choose for the reflection in time the same 
factors £ which made the Hamiltonian invariant under reflection 
in space (of. Table 1), the field theory in question is also invariant 
under formal time reflection1.

In the second step of the proof, we go over from the Hamil
tonian reflected in time to that obtained by time reversal of the 
second kind by means of Hermitian conjugation2. The Hamil
tonian or, more explicitly, its interaction part, was assumed to 
be a Hermitian quantity (postulate II) and is, therefore, not 
changed by this operation3. On the other hand, all field operators 
are now replaced by the Hermitian adjoint operators, all c-num- 
bers by the complex conjugated numbers, and the order of 
factors in all products is reversed. Therefore, the original order 
of factors in all individual, not symmetrized, products is resti
tuted. In this way one gets in fact that Hamiltonian which one 
can obtain from the original one by a time reversal of the second 
kind if one chooses the factors <5, entering in the time reversal 
of the second kind, in such a way that

ÇÔ = 1. (2.2)

This can be seen from a detailed study of the table. The con
dition (2.2) can be fulfilled also for real Bose fields and for 
Majorana fields.

1 Perhaps it should be emphasized that this reflection in time is treated as 
a purely formal operation. The problem whether Dirac fields arc measurable 
quantities or not does, therefore, not occur.

2 This connection between the formal reflection in time and the time reversal 
of the second kind throw’s some light on a discrepancy between results obtained 
by Schwinger (Phys. Rev. 82, 914 (1951)) and by Watanabe (1. c.). The time 
reversal applied by Schwinger is, in our language, a formal reflection in time; 
on the other hand, Watanabe pointed out that only time reversal of the second 
kind (his standpoint I), but not time reversal of the first kind, leads to a determina
tion of the commutation relations.

3 In this connection, it should perhaps be noted that proofs of the invariance 
under time reversal or under particle-antiparticle conjugation, for a given field 
theory, as a rule make use of the Hermitian character of the Hamiltonian.
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In this way the proof is finished; the invariance under time 
reversal of the second kind is a mathematical consequence of 
the postulates 1, II, la, Ila. Then, the equivalence of lime reversal 
of the first kind and of particle-antiparticle conjugation is ex
pressed by eq. (1.10), which allows us to go over from one 
operation to the other.

Finally, the proof has to be extended to couplings involving 
first derivatives of the Bose fields. To this purpose we make a 
transformation which can be considered as going over to a 
“nucleus of the interaction representation’’. We postulate1 that 
it is possible to express the operators <p (r), <p (r), (pkÇr), etc. 
by other operators 92 Çr), ip (r), (pk (r), in such a way that

I'. The commutation relations for the fields <p (r) etc. are form
ally identical with those for the original free fields (with
out ~).

IT. The Hermitian Hamiltonian becomes a sum of a part //0, 
which is formally identical with the free field Hamiltonian 
for the original fields, and an interaction part Hj, the density 
of which is the 00-component of a relativistic tensor (if 
expressed by the fields (p(r) etc.!).

We further retain the postulates la, Ha, but formulate them 
now, of course, for the fields 92 (r) etc. Then, the whole proof 
runs as in the case with no derivatives if one applies the sub
stitutions given in the table on the fields 92 (r), etc.

Usually, the fields with and without ~ are different only for 
time derivatives of Bose fields. From

?(') = £ (?) (2-3) 

and the identity (0.1), it then follows that one actually has the 
right substitution for cp (r) if one simply applies the substitutions 
on the original fields. But, for the argument of relativistic co
variance, the transition to the fields 92 (r) etc. is a rather essential 
step.

1 Cf. the remarks on the notion of relativistic field theories succeeding postu
lates I and II.
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Appendix 1

Properties of the matrices U, C, and T

The four-rowed matrices U and C are uniquely defined up 
to a factor of modulus one by eqs. (1.1), (1-2), or (1.3), (1.4), 
respectively. For the transposed matrices one has1

[7r = —Í/, Cr=+C. (A 1.1)

From (1.2) or (1.4) and (A 1.1), it follows that

Í7Í7*  = —1, CC*  = + 1. (A 1.2)

For the matrix T (eq. (1.7)) one finds

UTU*  = CTtf = — T*.  (A 1.3)

It is, according to eq. (1.5),

T=C*Í7  = —Í7*C  (A 1.4)

where use was made of
T = P (A 1.5)

and (A 1.1). Finally, one has

TT*  = 1. (A 1.6)

1 Proof either explicitly using a special representation or, more generally, 
following a method by Haantjes and Pauli. Cf. Pauli, W., Ann. Inst. H. Poin
caré 6, 137 (1936).
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Appendix 2
Covariant quantities constructed from Dirac spinors

Lemma: Each covariant quantity constructed from linear 
combinations of products of n spinors with star (*̂)  and n spinors 
without star (7))1 can be represented as a linear combination of 
products of n bilinear covariant quantities (eq. (2.1)). It is further 
possible to build these bilinear covariants for a special pairing, 
i. e., a special correspondence between the ip = ip*ß  and ip ope
rators so that each pair is connected by a general y matrix (1, 

yuVv’ etc.).
Additional remark: A special case of this lemma was proved 

by Pauli and Fierz2: For four spinors, all scalars constructed 
from the bilinear covariants for any pairing can be expressed 
as a linear combination of products of bilinear covariants for 
a special pairing. Our lemma is more general in several respects. 
It asserts that, e. g., any expression ip’la ip2ß ip2y ip4g raßyö trans
forming like a scalar can be written as a linear combination of 
(VT’pXVMb). (Viy/PPz) (W/PPi), etc. Further, the proof is not 
restricted as regards number of spinors and rank of the tensor 
to be constructed. The wider validity of our lemma is counter
balanced by the fact that we use a more abstract tool for our 
proof than Pauli and Fierz did.

Preliminaries to the proof: Every finite irreducible representa
tion of the proper Lorentz group can be characterized by two 
integral or half integral numbers. One denotes such a representa
tion by the symbol DÇjifjî)- A Dirac spinor (without star as well 
as with star) transforms according to the representation D 
+ £)((), x/2), which is reducible under the proper Lorentz 
group, but irreducible under the orthochronous Lorentz group. 
To the construction of all possible covariant quantities from a 
pair of Dirac spinors corresponds the decomposition of the 
Kronecker product of the representations, which can be done 
according to general rules

(op/,, o) + o(o, */ 2))! = I,,,.,
2 0(0, 0) + 2 O(*/ 2, */ 2) + 0(1, 0) + 0(0, 1). p >

1 This assumption means no loss of generality, as the matrix C always allows 
us to go over from one Dirac spinor to another which behaves like the Hermitian 
adjoint spinor.

2 Fierz, M., Z. Physik 104, 553 (1937).
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On the right hand side, one has just the well known bilinear 
covariants 2 scalars 79(0, 0), 2 four vectors Vä), and 
one general six vector 79(1, 0) + 79(0, 1). Note that we here 
classify only with respect to the proper Lorentz group, where 
no difference between proper tensors and pseudo-tensors exists.

Proof of the lemma : For 2 n Dirac spinors, the representation

(ß('/2. 0) + "(0. ‘/i))“ (A 2.2)

gives, if decomposed into irreducible constituents,
(1) the linear independent covariant quantities which can be 

constructed from these 2 n spinors (as (A 2.2) is the 2nlh power 
of 79(1/2, 0) + 79(0, 1/2)),

(2) the covariant quantities which can be constructed from 
the products of n bilinear covariants for a special pairing (as 
(A 2.2) is the n,h power of (A 2.1)).

Consequently, the number of linearly independent tensors of 
given rank which can be constructed from n bilinear covariants 
for a given pairing is not less than the number of linearly in
dependent tensors of that rank which can be constructed from 
2 n spinors.

Indleveret til selskabet den 23. oktober 1953. 
Færdig fra trykkeriet den 14. februar 1954.


